An Adaptive Least-Squares Mixed Finite Element Method for Fourth Order Parabolic Problems
نویسندگان
چکیده
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth order parabolic problems analyzed and developed in this paper. The Ciarlet-Raviart mixed finite element space is used to approximate. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated. The convergence of the adaptive least-squares mixed finite element method is proved.
منابع مشابه
An adaptive least-squares mixed finite element method for pseudo-parabolic integro-differential equations
In this article, an adaptive least-squares mixed finite element method is studied for pseudo-parabolic integro-differential equations. The solutions of least-squares mixed weak formulation and mixed finite element are proved. A posteriori error estimator is constructed based on the least-squares functional and the posteriori errors are obtained. Keywords—Pseudo-parabolic integro-differential eq...
متن کاملAn Adaptive Least-Squares Mixed Finite Element Method for Fourth- Order Elliptic Equations
A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth-order elliptic equations is analyzed and developed in this paper. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated.
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملAdaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of themixed finite element solutions for optimal control problems. Such a posteriori ...
متن کاملAdaptive Discontinuous Galerkin Methods for Fourth Order Problems
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...
متن کامل